网站导航

产品中心

当前位置:主页 > 产品中心 > 污水处理 > 污水处理设备 >碱性含铀废水处理技术

碱性含铀废水处理技术

简要描述:

碱性含铀废水处理技术铀矿冶废水主要来自矿石开采和铀矿加工两部分,包括矿坑水、吸附尾液、树脂洗水、沉淀母液等。根据浸出介质的差异,可分为酸性和碱性废水,酸性废水除含有铀、钍、镭等放射性核素外,还含有汞、镉、砷、铅、铜、锌、锰等非放射性核素;

  • 更新时间:2024-04-02
  • 产品型号:蓝阳环保
  • 厂商性质:生产厂家
  • 产品品牌:其他品牌
  • 产品厂地:常州市
  • 访问次数:590
详细介绍
品牌其他品牌加工定制
空气量1000m³/min处理水量100m³/h
设备厚度12mm,10mm,13mm,15mm

碱性含铀废水处理技术铀矿冶废水主要来自矿石开采和铀矿加工两部分,包括矿坑水、吸附尾液、树脂洗水、沉淀母液等。根据浸出介质的差异,可分为酸性和碱性废水,酸性废水除含有铀、钍、镭等放射性核素外,还含有汞、镉、砷、铅、铜、锌、锰等非放射性核素;碱性废水由于碳酸盐选择性溶解作用,铁、铝、钛等几乎不被溶解,浸出液仅含有少量的钼酸盐、硅酸盐、钒酸盐、磷酸盐和碳酸盐配合物。放射性核素钍在碱浸过程中也是不溶的,而镭则溶解1.5%~3.0%。因此对于碱法浸出的铀矿山来说,废水的主要污染物为放射性核素铀和镭。  

某铀矿山采用碱法浸出工艺,现有工艺废水主要由矿井水、吸附尾液、沉淀母液和树脂洗水四部分组成。废水采用软锰矿除镭—三氯化铁絮凝沉淀除铀工艺处理。由于负载树脂采用碱性氯化钠溶液淋洗工艺,贫树脂不转型,造成废水中Cl-浓度较高。废水中CO32-和Cl-共存,现有废水处理系统除铀效果差,难以实现达标排放。经过试验研究,提出了石灰碱化中和—氯化钡除镭—污渣循环处理碱性废水的工艺流程。  

1、试验部分  

1.1废水来源及组成  

试验废水为某铀矿山矿井水、吸附尾液、沉淀母液、负载树脂洗水的混合废水,其主要成分见表1。  

1.jpg  

1.2试验方法  

取废水0.5L,加入质量分数50%的石灰乳调节pH至12以上,浆体过滤,分析滤液中U和CO32-质量浓度;然后向滤液加入搅拌2h,再添加氯化钡继续搅拌0.5h,沉降澄清后测定上清液的U质量浓度和Ra活度浓度。  

1.3分析方法  

用钒酸铵滴定法测定常量铀;2-(5溴代-吡啶偶氮)-5-二乙胺基分光光度法测定微量铀;用氡射气法测定镭;用EDTA标准溶液滴定法测定钙;用标准盐酸溶液滴定法测定CO32-。  

2试验原理  

碱性废水的主要污染物为铀和镭,CO32-与UO22+配合能力强(k=2×1018),生成的UO2(CO3)34-比较稳定,使得铀难以被吸附载带除去。因此,应先消除CO32-的配合作用,用Ca(OH)2将CO32-和HCO3-定量转变为OH-,并生成CaCO3沉淀而除去,主要反应为  

相比硫酸铁价格低廉,选其作为中和剂,Fe2+在空气作用下氧化水解生成Fe(OH)3沉淀,并缓慢释放出酸而中和多余的OH-,使废水达到外排pH标准;生成的Fe(OH)3沉淀带正电,对铀酰配合离子有较好的吸附作用,达到深度除铀目的。另外,的加入补充了除镭工序所需的SO42-。主要反应为  

加入氯化钡与废水中SO42-反应生成BaSO4沉淀,由于Ra2+与Ba2+离子半径相近,在生成BaSO4沉淀过程中,Ra2+进入晶格形成Ba(Ra)SO4共沉淀。主要反应为  

3、试验结果与讨论  

3.1石灰用量对除CO32-的影响  

加入不同用量石灰去除废水的CO32-,测定滤液U、CO32-和Ca2+质量浓度,试验结果见表2。  

5.jpg  

从表2看出:石灰去除CO32-的同时,生成CaCO3沉淀将大部分铀载带下来,减轻了后续工序深度除铀的负担。以将ρ(CO32-)降至20mg/L以下为最小剂量,确定Ca(OH)2的最小用量为1.1倍化学计量。  

3..2用量对除铀的影响  

石灰用量为化学计量的1.1倍,加入不同用量的FeSO4·7H2O进行中和试验,测定上清液pH和铀质量浓度,试验结果见表3。  

试验结果表明:随FeSO4·7H2O用量增加铀浓度逐渐降低,当其用量达到2.0g/L时,铀质量浓度低于0.05mg/L,达到了废水排放标准。综合考虑外排废水pH要求,FeSO4·7H2O质量浓度需大于5.0g/L。  

3.3氯化钡用量对除镭效果的影响  中和废水使pH降至8左右,然后加入不同量的氯化钡进行搅拌,分析滤液镭活度浓度,试验结果见表4。可以看出,随钡盐用量的增加废水镭活度浓度逐渐降低,当其质量浓度达到60mg/L时,废水镭活度浓度可降至0.65Bq/L。因此,利用石灰碱化—中和—氯化钡除镭工艺处理废水,氯化钡质量浓度用量为60mg/L,处理后废水可达标排放。  

3.4废水处理验证试验  

对废水处理效果进行综合验证试验,试验条件:Ca(OH)2用量为化学计量1.1倍,FeSO4·7H2O质量浓度2.0g/L,氯化钡质量浓度60mg/L,试验结果见表5。  

8.jpg  

废水处理平行试验结果表明,处理后废水铀质量浓度都低于0.05mg/L,镭平均活度浓度为0.48Bq/L,均低于废水排放标准。  

3.5污渣循环减容试验  

中和产生的污渣体积较大,主要原因为污渣含水率太高。污渣含水由空隙水、表面吸附水、毛细水和内部水4部分组成,其中空隙水约占70%。显然,要使污渣减容主要是脱除空隙水。向石灰碱化得到的滤液中依次加入、氯化钡进行搅拌,然后静置约22h,测量浆体体积,倾出上清液,完成一个循环。下一循环补加石灰碱化滤液至前一个循环得到的浆体中,重复上述操作过程,试验结果见表6。  

9.jpg  

表6结果表明,采用污渣循环的方法,污渣之间的空隙水不断地脱除,使浆体体积明显减少,且污渣沉降速度加快,有利于过滤操作和实现槽式排放,7个循环后得到的污渣产量为5.7g/L。循环后废水pH下降,可考虑减少FeSO4·7H2O用量,节约废水处理成本。  

碱性含铀废水处理技术

1)采用石灰碱化—中和深度除铀—氯化钡除镭—污渣循环减容工艺可使废水中铀质量浓度降至0.05mg/L以下,镭活度浓度降至1.0Bq/L以下,处理后的废水可达标排放。  

2)依次采用了石灰、氯化钡三种沉淀剂,其中石灰碱化除去大部分铀,而兼有中和、深度除铀、补充除镭所需SO42-和抑制沉淀物返溶4种功能,使碱性含铀废水处理效果达到最佳。  

3)浆体循环操作可改善污渣过滤与沉降性能,提高工艺设备处理能力。


 


产品咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
推荐产品

联系方式

邮件:3145672861@qq.com
传真:0519-81668667
邮编:213133
地址:常州新北区王下村民营工业园58号
在线客服 联系方式 二维码

服务热线

0519-81660866

扫一扫,关注我们